Identification of patterns and predictive modeling of traffic accidents.



To develop predictive models for the prediction of traffic accidents.


Research questions

What are the characteristics of the locations where exists a higher number of traffic accidents?

Where and at what time of day is expected to exist a higher number of traffic accidents?


Literature review

(Almamlook et al., 2019; Dereli & Erdogan, 2017; Dogru & Subasi, 2018; Fancello et al., 2018; Hammad et al., 2019; Ihueze & Onwurah, 2018; La Torre et al., 2019; Le et al., 2020; Mohammed et al., 2019; Retallack & Ostendorf, 2019; Taamneh, Alkheder, et al., 2017; Taamneh, Taamneh, et al., 2017; Yuan et al., 2018)

  • Almamlook, R. E., Kwayu, K. M., Alkasisbeh, M. R., & Frefer, A. A. (2019). Comparison of machine learning algorithms for predicting traffic accident severity. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology, JEEIT 2019 - Proceedings, 272–276. https://doi.org/10.1109/JEEIT.2019.8717393
  • Dereli, M. A., & Erdogan, S. (2017). A new model for determining the traffic accident black spots using GIS-aided spatial statistical methods. Transportation Research Part A: Policy and Practice, 103, 106–117. https://doi.org/10.1016/j.tra.2017.05.031
  • Dogru, N., & Subasi, A. (2018). Traffic accident detection using random forest classifier. 2018 15th Learning and Technology Conference, L and T 2018, 40–45. https://doi.org/10.1109/LT.2018.8368509
  • Fancello, G., Soddu, S., & Fadda, P. (2018). An accident prediction model for urban road networks. Journal of Transportation Safety and Security, 10(4), 387–405. https://doi.org/10.1080/19439962.2016.1268659
  • Hammad, H. M., Ashraf, M., Abbas, F., Bakhat, H. F., Qaisrani, S. A., Mubeen, M., Fahad, S., & Awais, M. (2019). Environmental factors affecting the frequency of road traffic accidents: a case study of the suburban area of Pakistan. Environmental Science and Pollution Research, 11674–11685. https://doi.org/10.1007/s11356-019-04752-8
    Ihueze, C. C., & Onwurah, U. O. (2018). Road traffic accidents prediction modeling: An analysis of Anambra State, Nigeria. Accident Analysis and Prevention, 112, 21–29. https://doi.org/10.1016/j.aap.2017.12.016
  • La Torre, F., Meocci, M., Domenichini, L., Branzi, V., Tanzi, N., & Paliotto, A. (2019). Development of an accident prediction model for Italian freeways. Accident Analysis and Prevention, 124, 1–11. https://doi.org/10.1016/j.aap.2018.12.023
  • Le, K. G., Liu, P., & Lin, L. T. (2020). Determining the road traffic accident hotspots using GIS-based temporal-spatial statistical analytic techniques in Hanoi, Vietnam. Geo-Spatial Information Science, 23(2), 153–164. https://doi.org/10.1080/10095020.2019.1683437
  • Mohammed, A. A., Ambak, K., Mosa, A. M., & Syamsunur, D. (2019). A Review of the Traffic Accidents and Related Practices Worldwide. The Open Transportation Journal, 13(1), 65–83. https://doi.org/10.2174/1874447801913010065
  • Retallack, A. E., & Ostendorf, B. (2019). Current Understanding of the Effects of Congestion on Traffic Accidents. https://doi.org/10.3390/ijerph16183400
  • Taamneh, M., Alkheder, S., & Taamneh, S. (2017). Data-mining techniques for traffic accident modeling and prediction in the United Arab Emirates. Journal of Transportation Safety and Security, 9(2), 146–166. https://doi.org/10.1080/19439962.2016.1152338
  • Taamneh, M., Taamneh, S., & Alkheder, S. (2017). Clustering-based classification of road traffic accidents using hierarchical clustering and artificial neural networks. International Journal of Injury Control and Safety Promotion, 24(3), 388–395. https://doi.org/10.1080/17457300.2016.1224902
  • Yuan, Z., Zhou, X., & Yang, T. (2018). Hetero-ConvLSTM: A deep learning approach to traffic accident prediction on heterogeneous Spatio-temporal data. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 984–992. https://doi.org/10.1145/3219819.3219922