EMERGENGY

Identification of patterns and predictive modeling of traffic accidents.

 

Objective

To develop predictive models for the prediction of traffic accidents.

 

Research questions

What are the characteristics of the locations where exists a higher number of traffic accidents?

Where and at what time of day is expected to exist a higher number of traffic accidents?

 

Literature review

(Almamlook et al., 2019; Dereli & Erdogan, 2017; Dogru & Subasi, 2018; Fancello et al., 2018; Hammad et al., 2019; Ihueze & Onwurah, 2018; La Torre et al., 2019; Le et al., 2020; Mohammed et al., 2019; Retallack & Ostendorf, 2019; Taamneh, Alkheder, et al., 2017; Taamneh, Taamneh, et al., 2017; Yuan et al., 2018)

  • Almamlook, R. E., Kwayu, K. M., Alkasisbeh, M. R., & Frefer, A. A. (2019). Comparison of machine learning algorithms for predicting traffic accident severity. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology, JEEIT 2019 - Proceedings, 272–276. https://doi.org/10.1109/JEEIT.2019.8717393
  • Dereli, M. A., & Erdogan, S. (2017). A new model for determining the traffic accident black spots using GIS-aided spatial statistical methods. Transportation Research Part A: Policy and Practice, 103, 106–117. https://doi.org/10.1016/j.tra.2017.05.031
  • Dogru, N., & Subasi, A. (2018). Traffic accident detection using random forest classifier. 2018 15th Learning and Technology Conference, L and T 2018, 40–45. https://doi.org/10.1109/LT.2018.8368509
  • Fancello, G., Soddu, S., & Fadda, P. (2018). An accident prediction model for urban road networks. Journal of Transportation Safety and Security, 10(4), 387–405. https://doi.org/10.1080/19439962.2016.1268659
  • Hammad, H. M., Ashraf, M., Abbas, F., Bakhat, H. F., Qaisrani, S. A., Mubeen, M., Fahad, S., & Awais, M. (2019). Environmental factors affecting the frequency of road traffic accidents: a case study of the suburban area of Pakistan. Environmental Science and Pollution Research, 11674–11685. https://doi.org/10.1007/s11356-019-04752-8
    Ihueze, C. C., & Onwurah, U. O. (2018). Road traffic accidents prediction modeling: An analysis of Anambra State, Nigeria. Accident Analysis and Prevention, 112, 21–29. https://doi.org/10.1016/j.aap.2017.12.016
  • La Torre, F., Meocci, M., Domenichini, L., Branzi, V., Tanzi, N., & Paliotto, A. (2019). Development of an accident prediction model for Italian freeways. Accident Analysis and Prevention, 124, 1–11. https://doi.org/10.1016/j.aap.2018.12.023
  • Le, K. G., Liu, P., & Lin, L. T. (2020). Determining the road traffic accident hotspots using GIS-based temporal-spatial statistical analytic techniques in Hanoi, Vietnam. Geo-Spatial Information Science, 23(2), 153–164. https://doi.org/10.1080/10095020.2019.1683437
  • Mohammed, A. A., Ambak, K., Mosa, A. M., & Syamsunur, D. (2019). A Review of the Traffic Accidents and Related Practices Worldwide. The Open Transportation Journal, 13(1), 65–83. https://doi.org/10.2174/1874447801913010065
  • Retallack, A. E., & Ostendorf, B. (2019). Current Understanding of the Effects of Congestion on Traffic Accidents. https://doi.org/10.3390/ijerph16183400
  • Taamneh, M., Alkheder, S., & Taamneh, S. (2017). Data-mining techniques for traffic accident modeling and prediction in the United Arab Emirates. Journal of Transportation Safety and Security, 9(2), 146–166. https://doi.org/10.1080/19439962.2016.1152338
  • Taamneh, M., Taamneh, S., & Alkheder, S. (2017). Clustering-based classification of road traffic accidents using hierarchical clustering and artificial neural networks. International Journal of Injury Control and Safety Promotion, 24(3), 388–395. https://doi.org/10.1080/17457300.2016.1224902
  • Yuan, Z., Zhou, X., & Yang, T. (2018). Hetero-ConvLSTM: A deep learning approach to traffic accident prediction on heterogeneous Spatio-temporal data. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 984–992. https://doi.org/10.1145/3219819.3219922

 

 

Image